To clarify an origin of a Photo Luminescence (PL) spectrum from an n-type semiconductor, a decay curve of the PL at peak energy was observed. Figure 1 and "2020 decay curve.txt" show the decay curve of the PL. As shown in Fig. 1 vertical axis is natural log of PL intensity and horizontal axis is decay time. From the Fig. 1 you can find that the PL constructed with a long life time τ_L (sec) and a short life time τ_S (sec) components.

Here, to analyze the PL decay curve, let's consider a transition model as shown in Fig. 2. We assume that the origin of the PL is due to a radiative recombination transition from donor levels of $E_S(eV)$ and $E_L(eV)$ to the grand state, where E_S and E_L denote energy levels of short life time and long life time components, respectively. Population of electrons at the levels of E_S and E_L are $n_S(t)(1/cm^3)$ and $n_L(t)(1/cm^3)$, respectively, and radiative transition ratio from the levels of E_S and E_L to the ground state are $\gamma_S(1/scc)$ and $\gamma_L(1/scc)$, respectively. Population of electrons in valence band just after excitation is $n_0(1/cm^3)$, and we assumed that the excited electrons into valence band immediately transit to the levels of E_S and E_L without any losses, that is $n_0 = n_S(0) + n_L(0)$ at t = 0, where $n_S(0): n_L(0) = \alpha : (1 - \alpha)$ and $0 \le \alpha \le 1$. We assumed that there is no non-radiative recombination from the levels of E_S or E_L to the ground state, there is no transition from E_S to E_L and from E_L to E_S , there is no re-excitation from E_S or E_L to valence band, and PL intensity is proportional ton $_S(t) + n_L(t)$.

- (1) Derive rate equations of $n_{\rm S}$ and $n_{\rm L}$.
- (2) From problem (1), derive the PL intensity depends on decay time $(I_{PL}(t))$, where we assumed that $I_{PL}(0) = 1$.
- (3) Estimate $\tau_{\rm S}$, $\tau_{\rm L}$, and α , by fitting the equation derived at question (2) to the "2020 decay curve.txt".
- (4) Estimate $\tau_{\rm S}$, $\tau_{\rm L}$, and α . To estimate $\tau_{\rm S}$, $\tau_{\rm L}$, and α , don't use <u>any fitting</u>.

Deadline 2020/7/24 15:00(JST)

Submitting place: mail box at room 406 of the electrical engineering building.

Write your e-mail address which can receive from tanaka@vos.nagaokaut.ac.jp.

If your score is less than 60, I will inform you. If your written address rejected my mail, I will not inform you.

If you resubmit report, your final score of this report is 80% of resubmit report, however, if the final score is higher than 60, your final score of this report is 60. You can resubmit only one time.

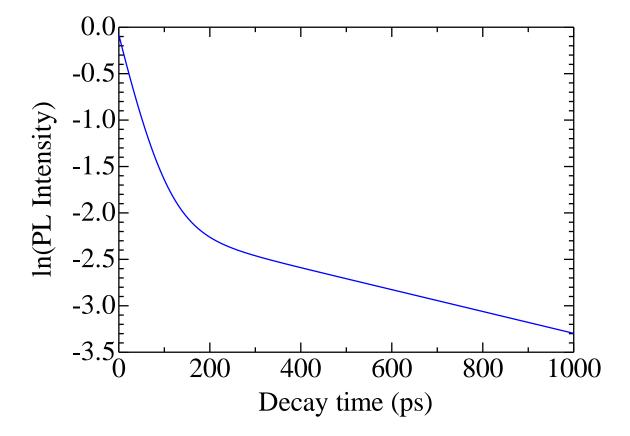


Fig. 1 Decay curve from n-type semiconductor.

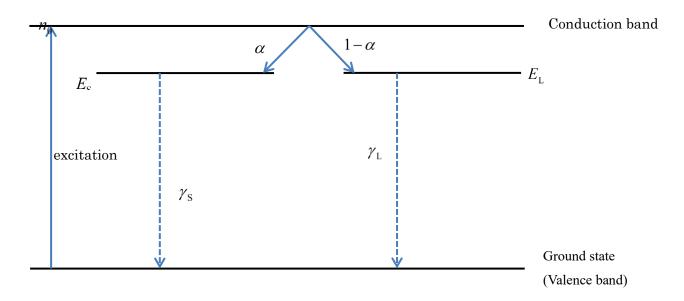


Fig. 2 transition model